Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation
نویسندگان
چکیده
منابع مشابه
Nonoscillation criteria for second-order nonlinear differential equations
Consider the second order nonlinear differential equations with damping term and oscillation’s nature of ( ( ) '( )) ' ( ) '( ) ( ) ( ( )) ( '( )) 0 r t x t p t x t q t f x t k x t 0 t t (1) to used oscillatory solutions of differential equations ( ( ) '( )) ' ( ) ( ( )) ( '( )) 0 t x t t f x t k x t (2) where ( ) t and ( ) t satisfy conditions given in this work paper. Our ...
متن کاملExistence and uniqueness results for a nonlinear differential equations of arbitrary order
This paper studies a fractional boundary value problem of nonlinear differential equations of arbitrary orders. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. In order to clarify our results, some illustrative examples are also presented.
متن کاملOn Fuzzy Solution for Exact Second Order Fuzzy Differential Equation
In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...
متن کاملOscillation and Nonoscillation Criteria for Second-order Linear Differential Equations
Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established. 1. Statement of the Problem and Formulation of Basic Results Consider the differential equation u′′ + p(t)u = 0, (1) where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is locally absolutely continuous tog...
متن کاملPeriodic solutions for a second order nonlinear functional differential equation
The second order nonlinear delay differential equation with periodic coefficients x ′′(t)+ p(t)x ′(t)+ q(t)x(t) = r(t)x ′(t − τ(t))+ f (t, x(t), x(t − τ(t))), t ∈ R is considered in this work. By using Krasnoselskii’s fixed point theorem and the contraction mapping principle, we establish some criteria for the existence and uniqueness of periodic solutions to the delay differential equation. c ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1970
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1970.32.715